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Abstract— Animals use tails to improve locomotion perfor-
mance; here we assess how the biomimetic MIT Cheetah robot
can do the same. Analysis proves that for a given power and
weight, tails can provide greater average torque than reaction
wheels for the short times of interest in high speed running.
A simple tail controller enables the cheetah to perform aerial
orientation maneuvers in simulation. The MIT Cheetah robot’s
tail rejects an impulsive disturbance from a ‘wrecking ball’ in
experiments. This study demonstrates that a tail will help the
MIT Cheetah achieve its goal of 30mph locomotion by 2014.

I. INTRODUCTION

The field of bio-inspired robotics continually mines na-

ture’s abundant store of solutions to engineering challenges.

However, one aspect of animal motion that has not been

thoroughly explored is the incredible variety of ways the tail

is used in nature, including balance, swimming, flight con-

trol, running, hopping, climbing, defense, warning, courtship,

and thermoregulation. Many of these examples could provide

engineers with solutions to difficult unsolved problems in

robot design.

Only a few robots have incorporated tails for more than

aesthetic purposes or as simple fixed inertia. One of the

first robots to use an active tail was the Uniroo developed

at the Leg Lab [1]. This robot emulated the motion of

a hopping kangaroo and actuated the tail to cancel the

motion of the leg in order to maintain constant body pitch.

Simple robots with tails have been used to reproduce and

better understand tail motion in geckos and other lizards

[2][3]. These robots demonstrated how tails could be used

for orientation control during leaping and falling when no

ground reaction is available. Other robots have used swinging

appendages to climb stairs [4] and hop [5].

This paper’s goal is to contribute to the discussion regard-

ing which tail uses found in nature might provide solutions

for various problems in robotics and how they might be

implemented practically. We will begin in Section II with

a brief overview of some of the notable tail uses found in

nature and specifically focus on the cheetah’s use of its tail

during high speed running. We then turn our focus to the MIT

Cheetah and present the reader with three tail use studies.

In Section III, we analytically compare a tail with existing

engineering solutions for applying forces and moments to a

body. In Section IV, we present simulations of a controller

that is able to reorient a model of the cheetah in flight to

a desired landing configuration. In Section V, we present an
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experiment to demonstrate the utility of the tail in rejection

of an impulsive disturbance, and we conclude in Section VI.

II. BIO-INSPIRATION

Biologists have for many years recorded observations of

animal tail use. Graham Hickman provided a review of these

uses in mammals [6]. Kangaroos are known to use their tails

both as a counter-balance as they support their weight on two

legs and for energy storage during hopping [7]. Dinosaurs

are also believed to have used their tails for balance in

standing as a gravitational moment. During walking, the

tail was believed to swing laterally to maintain the yaw

of the body [8]. Long prehensile tails in many species of

monkeys are used for balance in climbing and navigating

narrow tree branches. These tails are also capable of grabbing

onto branches and can allow the monkey to swing with their

weight supported [6]. The scaled giant pangolin is capable of

rolling into a tight ball while using its large tail as a shield

over its body. Many lizard species as well as rodents are

capable of intentionally disconnecting their tails in distress

to distract potential predators. Pocket gophers are believed

to use their bare tails for thermoregulation to help cool their

bodies [9]. Lizards have been observed using their tails in

aerial maneuvers to adjust body orientation [2][3]. Kangaroo

rats have been observed swinging their tail in midair to

completely turn their body and begin hopping in the opposite

direction. Beavers, macropods, pangolins, spider-monkeys,

and giant anteaters use their tails as a third leg of a tripod

when balancing on their rear legs in order to free their

forelimbs for another task such as carrying objects [6].

Our inspiration to begin this investigation came largely

from a video produced by the BBC showing a cheetah during

a chase [10]. In this chase, the tail can be seen quickly

swinging from side to the other during rapid turns. Figure

1 shows two snapshots from this footage which capture

the initial and final position of the tail in one swing. We

hypothesized that the tail was providing a reaction moment

to help roll the body of the cheetah in midair and initiate the

turn. The tail can be seen whipping over the cheetah each

time a rapid turn is made in this film sequence. We wanted

to explore how this might be of use in our cheetah robot

and to investigate what other uses the tail might provide for

roboticists. However, conventional technologies may also be

suitable for providing reaction forces and torques, so first we

benchmarked tails against these other technologies.



Fig. 1. Two snapshots taken from the BBC’s “Life of Mammals” [10]
showing the cheetah tail whip from one side to the other during a rapid
turn. It is hypothesized that the tail provides a reaction moment to help roll
the body of the cheetah in midair and thus assist the turn.

III. ANALYSIS: COMPARISON OF BIOLOGICAL AND

ARTIFICIAL FORCE/MOMENT TECHNOLOGIES

We are interested in tails from the perspective of bio-

inspired robot design. A fundamental tenant of our design

philosophy is that we must not simply copy nature; rather,

we seek to extract principles from biological examples for

application to original designs. In this paper, we study the

principle that an appendage for applying forces/moments

without requiring ground contact is useful for legged locomo-

tion. Animals use a tail for this purpose, but in engineering

we should not neglect alternative mechanisms on the sole

basis that they are not found in nature.

Indeed, several artificial mechanisms are used to apply

forces/moments without reacting those forces against fixed

solids: turbojets propel planes through the air, reaction

masses stabilize skyscrapers, and gyroscopes reorient space-

craft in orbit. Table I summarizes some of these mechanisms

and key properties of each.

TABLE I

PROPERTIES OF FORCE/MOMENT APPLICATION TECHNOLOGIES:

Technology Force Torque ∆ CoM

Tail Yes Yes Yes

Reaction Wheel [11] No Yes No

Control Moment Gyroscope [11] No Yes No

Reaction Mass Yes No Yes

Thruster / Gas Jet [11] Yes No No

Propeller [12]/ Rotor Yes Yes No

Turbojet [12]/ Turbofan [12] Yes No No

Capabilities of technologies to apply controlled forces and
moments at their attachment point and adjust system center of mass.

Several of them are dismissed as candidates for use on the

MIT Cheetah on qualitative grounds. Thrusters, turbofans,

turbojets, and propellers are all very capable, but have rel-

atively high minimum complexity for practical implementa-

tion. Gas jets are simpler, but less powerful for a given mass,

and require a source of compressed gas not otherwise needed

by the robot. The effectiveness of a translating reaction mass

would be limited by the stroke of its linear guide, and a long

linear guide is an undesirable use of space. The analysis of

control moment gyroscopes is more complicated than other

technologies; they deserve further study, but they are beyond

the scope of this paper.

We consider in greater detail the relative advantages of

a reaction wheel. As noted in [13], the principal difference

between a tail and a reaction wheel is that a reaction wheel

is designed to fit entirely within a volume such that it can

rotate continuously, whereas a tail is allowed to have greater

maximum dimensions, and thus considerably greater moment

of inertia, but it cannot rotate continuously without colliding

with other parts of the body or the ground.

Consider the goal of reorienting the roll angle of a chee-

tah’s posterior to change running direction while in pursuit of

evasive prey. It is hypothesized that cheetahs rapidly swing

their tails to provide the moment needed to rotate their

posterior, especially when the rear legs are not in contact

with the ground. On the MIT Cheetah robot, either a tail or

a reaction wheel could react such a moment, but we wish

to quantify which is capable of applying a greater average

moment over a given amount of time. It is assumed that

at the end of this time, the legs will be in contact with

the ground, and any angular momentum accumulated by the

reaction wheel or tail can be ‘dumped’ to the ground through

the legs.

We begin our analysis by deriving the equations of motion

of the system. After finding the differential equation describ-

ing the relative rotation of the reaction wheel or tail and

the robot’s posterior, we will consider the torque limitation

imposed by an electric actuator with a given speed/torque

relationship. We will then study how the optimal design of

the actuator’s transmission depends on parameters such as the

motor’s peak power P ∗, the reaction wheel or tail’s effective

inertia IE , and the time of interest tf . The result allows us to

compare whether a reaction wheel or tail is more appropriate

for rolling the cheetah posterior under the given constraints.

A. Equations of Motion

A tail or reaction wheel, hereafter referred to as body B,

is joined to the posterior of the cheetah, body A, which is

assumed to be decoupled from the rest of the cheetah by the

flexibility of the spine. A rotational actuator produces torque

T between between body A and body B. The system is split

at the joint between the two bodies, and the resulting free

body diagrams are shown in Figure 2.

Applying Newton’s second law to body A yields
∑

A

Fi = −mAĝ−R = mAr̈A. (1)

Euler’s second law for body A is

∑

A

Ti = −T+ rC/A ×−R =
d

dt
(IA · ωA) . (2)

Likewise, for body B,
∑

B

Fi = −mB ĝ+R = mB r̈B , (3)

∑

B

Ti = T+ rC/B ×R =
d

dt
(IB · ωB) . (4)

Expressing r̈B = r̈A+ r̈B/A, Equation 1 and Equation 3 sum

and rearrange to give

r̈A = −ĝ−
mB

mA +mB
r̈B/A. (5)
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Fig. 2. Free body diagram of the posterior (body A) and tail/reaction wheel
(body B). Torque T and force R act at the joint between the bodies. Center
of mass points A and B are at positions rA and rB relative to an inertial
reference; point C is at relative position rC/A with respect to point A and
rC/B with respect to point B. Vector rB/A (not illustrated) extends from
point A to point B. Bodies A and B have masses mA and mB , moments of
inertia relative to their respective center of masses IA and IB , and angular
velocities ωA and ωB . Gravitational acceleration g acts along −̂.

Substituting Equation 5 back into Equation 1 yields an

expression for the reaction force

R = mE r̈B/A, (6)

where mE = mAmB

mA+mB
is the ‘effective mass’ of the bodies.

Surely the dynamics can be derived without this constraint

reaction force entering the equations explicitly, but it is

instructive to see that the reaction force acting on body A

is linearly proportional to the relative acceleration of B with

respect to A. In the general case, this potentially complicated

R acts at a distance from the center of mass of body A,

creating a moment about the center of mass. This presents

an essential difference between a reaction wheel and a tail,

which is also noted in [14]. For a reaction wheel, r̈B/A ≡ 0,

and the moment applied about body A center of mass is

simply T1. The motion of a tail, however, imparts a force on

body A, which creates a moment about the body A center

of mass. Depending on the state at each instant, this may

either augment or diminish the resultant torque produced by

the tail, complicating analysis considerably.

We continue by reducing our equations to the planar

case and assuming that point A projects onto point C in

the plane, eliminating the rC/A × −R term of Equation

1. This simplification is justified when considering a real

cheetah in the mediolateral plane M (from behind), in which

the projection of the center of mass is likely to be only

slightly above or below the attachment point of the tail. Also,

since we are interested in biology-inspired design rather than

copying biology, we are free to choose the location of the

tail joint on the cheetah if we deem analytical tractability to

be sufficiently important. Adding Equation 2 and Equation

4 yields

rC/B ×R = IAω̇Ak̂+ IBω̇Bk̂, (7)

1However, T itself can be complicated in three dimensions, when the
accumulated angular momentum of body B begets gyroscopic torques.

where some vector and tensor quantities have been replaced

by their corresponding vector and scalar quantities in the

plane, and k̂ is the unit vector normal to the plane M .

Defining b = projM
(

rC/B

)

and using Equation 6, the term

rC/B ×R evaluates to −mEb
2ω̇Bk̂, and thus

IAω̇A = −
(

IB +meb
2
)

ω̇B . (8)

Note that this can be integrated, yielding a statement of

angular momentum conservation,

IAωA +
(

IB +meb
2
)

ωB = H, (9)

where H is the constant of integration. If the initial angular

velocities are zero, then integrating once more yields

∆θA = −
IB +meb

2

IA
∆θB , (10)

which reveals that the change in the absolute angle of body

A ∆θA is linearly related to the change in angle of body B

∆θB and opposite in direction.

Solving Equation 2 and Equation 4 for ω̇A and ω̇B ,

respectively, and taking the difference, we get an equation

for the relative angular acceleration

ω̇B − ω̇A = ω̇ =
T

IE
, (11)

where IE =

[

IA(IB+mEb2)
IA+IB+mEb2

]

is the effective inertia of bodies

A and B.

B. Actuator Limitation

Assuming the actuator, including a fixed gear transmission,

has a linear speed-torque curve while operating at its maxi-

mum voltage, the maximum motor power P ∗ is produced at

half its no load speed ω0

2
and half its stall torque T0

2
, that is

P ∗ = ω0T0

4
. Then the torque of the motor as a function of

the speed can be expressed as

T = T0

(

1−
ωT0

4P ∗

)

. (12)

Substituting this relationship into Equation 11 completes

the equation of motion,

ω̇ +
ωT 2

0

4P ∗IE
−

T0

IE
= 0, (13)

the solution of which is

ω(t) =

(

ω(0)−
4P ∗

T0

)

e
−

T2
0

4P∗IE
t
+

4P ∗

T0

. (14)

C. Angular Impulse

We wish to design our system to maximize the average

torque over time of interest tf , which is equivalent to

maximizing angular impulse, the integral of the torque over

the time of interest. Assuming that the initial relative angular

velocity ω(0) = 0, Equation 14 is substituted into Equation

12 and integrated for the total impulse

J =

∫ tf

0

Tdt =
4P ∗IE

T0

(

1− e
−

T2
0

4P∗IE
tf

)

, (15)

the quantity we seek to maximize.



D. Orientation Change

It is important to note that the integral of Equation 12 can

also be expressed

J = T0

(

tf −
∆θT0

4P ∗

)

, (16)

where ∆θ = ∆θB −∆θA is the relative angle between the

two bodies. Equation 16 can be equated to Equation 15 and

rearranged to give a closed form expression for ∆θ, which,

for a tail, may need to be limited to avoid a collision with

the legs or the ground. Combined with Equation 10, we also

have closed form time trajectories for ∆θA and ∆θB .

E. Optimization

In order to properly compare the reaction wheel and tail,

we must maximize J(T0) for each by appropriate design of

the transmission, or choice of stall torque T0. We look for a

maximum J∗ = maxT0
J(T0) by taking the derivative

dJ

dT0

=

(

2tf +
4IEP

∗

T 2
0

)

e
−

T2
0

4IEP∗ tf −
4IEP

∗

T 2
0

(17)

and solving dJ
dT0

∣

∣

∣

T0=T∗

0

= 0 for an extreme point. The MAT-

LAB Symbolic Toolbox [15] provides the unique positive real

solution

T ∗
0 =

√

−
2IEP0

tf

(

1 + 2W−1

(

−
1

2
√
e

))

, (18)

where W is the Lambert W-function [16], which evaluates

at the given argument to W−1

(

− 1

2
√
e

)

≈ −1.7564. This is

verified to be a maximum, as

d2J

dT 2
0

∣

∣

∣

∣

T0=T∗

0

= −2



1 +
1

W−1

(

− 1

2
√
e

)





tf

T ∗
0

< 0. (19)

The optimal T0 = T ∗
0 of Equation 18 can be substituted into

Equation 16, yielding an analytical expression for maximum

J = J∗ as a function of P ∗, IE , and tf . A plot of this

function is shown in Figure 3.

F. Discussion

This analysis provides a means for assessing whether a

tail or reaction wheel is more appropriate for the given task.

Given a body inertia IA, geometry and mass constraints, and

maximum power P ∗ that determines the motor to be used,

the rest of the system can be optimized roughly as follows:

• Design a reaction wheel of maximal moment of inertia

(under the constraints) that is free to rotate continuously.

• Design a maximal moment of inertia tail. Determine the

maximum allowable relative rotation of the tail.

• Use Equation 18 for actuator design, that is, to deter-

mine the optimal stall torques for the tail actuator and

the reaction wheel actuator.

• Use Equation 15 to determine the maximum angular

impulse J∗ in the time of interest tf (and within the

maximum allowable ∆θ, for the tail) of each system.
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a function of system effective moment of inertia IE and time of interest
tf . Shading indicates relative angle ∆θ; lines of constant relative angle are
shown. For the MIT Cheetah, the maximum mass for tail or reaction wheel
is m = 2kg. Allowing maximum radius rw = 0.1m for a reaction wheel
yields IE,w ≤ mr2w = 0.02kg·m2, and allowing rt = 0.6m for a tail

yields IE,t ≤ mr2t = 0.61kg·m2. For the time of interest tf ≈ 0.2s, the
optimal tail can produce a significantly higher maximum angular impulse
than the reaction wheel without exceeding the maximum allowable rotation
of ∆θ ≈ π/2.

The system capable of a higher impulse under the

constraints is likely the better option.

Of course, many different constraints can complicate the

analysis. There is always a finite selection of motor and

gearbox combinations, it is common for total system mass

rather than power to drive motor selection, and adding length

to a tail may simultaneously increase its moment of inertia

but decrease its range of motion. Other complexities, such as

a nonlinear motor speed/torque curve, and a large distance

between the actuator axis and body center of mass, can

preclude closed-form analysis.

Still, the preceding analysis outlines a path for numerical

studies under such complications, and reveals several im-

portant trends when the assumptions made herein are nearly

true.

• The maximum impulse that can be delivered over a long

time period is proportional to the square root of the

product of motor power, system effective moment of

inertia, and time (Equations 15 and 18).

• The longer spatial dimension of a tail provides the

advantage of a greater moment of inertia at the cost

of a constraint on maximum allowable relative rotation.

• A reaction wheel is appropriate when there are tightly

confining geometry constraints and the time of interest

is very long.

• A tail is appropriate when space is available for a high

moment of inertia and the time of interest is very short.

For the MIT Cheetah robot, the time of interest is very

short, and there is plenty of space behind the robot for a high

effective moment of inertia tail. As illustrated in Figure 3, a

tail offers a considerably higher impulse in our application.



TABLE II

CHEETAH SIMULATION PARAMETERS:

Parameter Value Units

Body Mass 35 kg

Body CoM-Pivot 0.525 m

Body x̂ Moment 0.4 kg·m2

Body ŷ Moment 4.0 kg·m2

Body ẑ Moment 4.0 kg·m2

Tail Length 0.54 m

Tail Mass 0.74 kg

Thus we move forward with our study of tails by considering

how their inertial torque can be used to reorient the body

during flight.

IV. SIMULATION: ATTITUDE MANEUVERS USING A TAIL

In this section, we study a controller for performing

aerial orientation maneuvers in three dimensions using a tail.

Attitude control using conventional engineering technologies

compared in Table I is well studied for aircraft and spacecraft

[17][18], and there are many studies of self-righting of

animals during free fall [19][20]. There are general studies

for control of two rigid bodies with three torque axes [21],

and even studies of bio-inspired robots which reorient their

bodies primarily about one axis [3][14] or decoupled multiple

axes [2]. We present a simple feedback law for coupled pitch,

roll, and yaw (three-axis) maneuvers with only two control

axes.

In the context of spatial maneuvers, perhaps the most

important difference between tails and conventional inertial

reaction technologies is that the motion of the tail creates

a reaction force per Equation 6, which adds a moment in

Euler’s second law for the body, Equation 2. Our approach

is to neglect these reaction forces in controller design for

simplicity, and test the controller’s performance under the

complete dynamics to determine the extent to which this

simplification is justified.

A. The Plant

1) Modeling: We model the cheetah as two rigid bodies

in three dimensional space as in Figure 2, but with a few

notable differences. The first rigid body, representing the

MIT Cheetah’s body, includes the mass of all cheetah body

parts other than the tail, rather than the posterior alone. The

second rigid body, representing the tail, is a point mass at the

end of a massless rod, which is attached to the body through

a frictionless universal joint. The first axis of the universal

joint is aligned with a principal axis of the body, the second

axis is always perpendicular to it, and a torque actuator acts

about each. Aerodynamic forces/torques are neglected due

to the considerable mass of the system relative to its surface

area and speed, and translational motion is not considered.

Table II lists the parameters used.

2) Kinematics: XZY Euler (Cardan) angles about the

body-fixed principal axes are used to describe the orientation

of the body relative to the inertial frame. Since the universal

joint has two degrees of freedom, two angles are used

to describe the tail’s orientation relative to the body. The

coordinates were carefully chosen to avoid the singularities

inherent to all Euler angle orientation representations.

3) Dynamics: After formulating the kinetic energy of the

body in terms of the chosen angles and their time derivatives,

we use Lagrange’s method to derive the equations of motion

using the MATLAB Symbolic Toolbox [15]. The equations

are integrated using MATLAB’s ode45() [22] function with

default parameters.

B. Control

The function of the controller in this section is to use the

tail to change the cheetah’s body orientation while it is not

in contact with the ground, such as during the aerial phase

of running. Design of this controller is difficult because:

• The system is highly underactuated. We must regulate

the orientation of the body in space (3 degrees of

freedom) while imposing limits on the orientation of

the tail (2 degrees of freedom) using only two control

torques of limited magnitude.

• The three dimensional dynamics among the states

are strongly coupled, highly nonlinear, and thus non-

intuitive.

While our long-term goal is to develop a controller suitable

for re-orienting the body in mid-air to compensate for

unexpected disturbances, we simplify the problem for this

initial study. The controller itself does not attempt to control

the angular velocity when the desired orientation is reached,

set explicit bounds on the tail orientation, or limit or actuator

torques, although the latter are effectively limited by gain

selection. Despite these simplification, we are still left with

an underactuated system with difficult dynamics.

Without loss of generality, the desired orientation is set

as where body roll, yaw and pitch are all zero. The control

algorithm executed at each instant to achieve this orientation

from any initial position is:

1) Find the Euler axis ê, that is, the unique axis fixed in

space about which the body could rotate to achieve the

desired orientation.

2) Find the Euler axis angle θe, that is, the magnitude of

the rotation about the Euler axis ê needed to achieve

the desired orientation.

3) Calculate the current angular velocity ωb of the body

and the corresponding angular momentum Hb.

4) Define the desired angular velocity ω
d
b to be in the di-

rection of the Euler axis ê with magnitude proportional

to the Euler axis angle θe:

ω
d
b = k1θeê, (20)

where k1 is a tuned, constant gain.

5) Determine the desired angular momentum Hd
b to be

that which corresponds with the desired angular ve-

locity ω
d
b ,

Hd
b = Ib · ωd

b . (21)



6) Determine the desired change in angular momentum

Ḣd
b , which is in the direction of and is proportional to

the error in angular momentum. That is,

Ḣd
b = k2

(

Hd
b −Hb

)

, (22)

where k2 is a tuned, constant gain. The desired torque

Td is set equal to Ḣd
b .

7) Project the desired torque onto the space of achievable

torques, that is

T = projST
d, S = span(T1,T2), (23)

where T1 and T2 are unit torques along the axis of

the actuators.

The controller performance was improved by optimizing

via single-shooting [23] the initial tail orientation and gain

k2 in Equation 22 to minimize the norm of the Euler angles

of the body at the final state. This approach allowed us

to specify a desired time at which the goal was to be

reached, and could be extended to specify a desired final

angular velocity and set limits on the final orientation of the

tail. The use of onboard optimization is reasonable when

compensating for known disturbances, such as slopes and

uneven terrain, as the MIT Cheetah controller may plan

its stride, including aerial maneuvers incorporating the tail,

to compensate for these. Separating the relatively simple

problem of choosing the initial orientation of the tail from

the considerably more complicated problem of designing the

trajectory to the goal fits well in the framework of [24] that

has been studied for control of the MIT Cheetah.

C. Discussion

As shown in Figure 4, the controller fails to achieve

the desired orientation when the initial tail orientation is

arbitrary, but is successful when then initial tail orientation

is optimized.

The simple controller has known deficiencies. As shown

in Equation 6, acceleration of the tail center of mass relative

to the body center of mass creates reaction forces at the

joint, which in turn create moments about the body center

of mass. This controller does not consider these moments

when calculating the motor torque needed to adjust the

body angular momentum. Using these natural dynamics will

increase the input effort required from some states and

decrease the required actuator torque from others. Some

additional computation is required, but this may be a simple

way to make the controller more effective.

Nonetheless, the experiments are enlightening. Starting

from random tail orientations, the controller tends to fail by

orienting the system in a ‘singular equilibrium’, that is, a

situation in which the required torque is orthogonal to the

space of achievable torques. An attempt was made to avoid

this singularity by perturbing the desired angular momentum

as the singularity was approached, but this was not very

effective. This suggests that increasing the moment of inertia

of the tail about its axis and adding a third actuator about

that axis would significantly improve ease of control.
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Fig. 4. Sample orientation trajectories of the controlled cheetah body from
sample initial angles. Trajectories starting at random initial body and tail
orientation do not reach their goal at the origin, but they do decrease the
distance from the origin, that is, the norm of the Euler angles. Trajectories
starting from the same body angles but with optimized initial tail angles
nearly pass by the origin at a desired time. All trajectories shown are for
zero angular momentum about the system center of mass; trajectories for
the system with non-zero angular momentum do pass by the origin but
eventually deviate.

Several items remain to be addressed before an aerial

maneuver controller can be implemented on the MIT Cheetah

robot. However, one tail controller has already been imple-

mented on the MIT Cheetah robot; the simpler problem of

using the tail to stabilize the robot against disturbances while

feet are in contact with the ground is studied in the following

section.

V. EXPERIMENT: EXTERNAL DISTURBANCE REJECTION

USING A TAIL

In order to demonstrate the use of a tail for one purpose

in robotics, we designed an experiment based on [25], which

considers tail balance in cats. In their experiment cats were

trained to walk along a narrow beam and in random cases

a researcher would move the beam laterally a fixed distance

while a camera observed the movement of the tail. In every

case, the cat would swing the tail in the direction the beam

was moved in order to maintain balance. The researchers

then paralyzed the tail muscles of the cat and repeated the

experiment, finding that the cats now fell from the beam far

more frequently. Walker’s work indicated that in situations

where the legs could not be used to provide reaction forces

the tail was invaluable to maintain balance.

1) Experimental Setup: In our experiment, the MIT

robotic cheetah was set to stand in place while a large

disturbance was introduced. Figure 5 shows an image of

the experimental setup. The tail was driven by a DC motor

through a 43:1 gearbox. The mass of the tail was 0.74kg

and the moment of inertia about the motor rotation axis was

measured to be 0.160kg m2 based on period of oscillation.

For each trial, the feet of the cheetah were set in the

same position as marked by tape on the standing platform.



Fig. 5. Experimental setup: the robotic cheetah was set to stand while the
clay wrecking ball was swung into the impact site on the rear pelvis. A
foam pad was added at the impact site to soften the shock on the robot.

The body orientation was carefully adjusted to ensure the

same initial conditions for each test. The servos controlling

abduction of the four legs were energized and set to maintain

position while the leg length and angle were mechanically

locked. To apply a standard disturbance, a clay mass weigh-

ing 1.16kg was swung into the cheetah from a prescribed

height in each test. Initially, the clay mass was released at

different heights to find a level that would consistently knock

the cheetah off balance and for all subsequent tests the same

height was used. The mass hit the cheetah on the right side

of the hip as shown in Figure 5 each time with a velocity of

5± 0.2m/s. For the swinging tail cases, the tail was initially

set to a slight angle from the vertical toward the incoming

clay. In cases where the tail was held fixed, the tail was set

to this same angle and kept in place with a stiff proportional

control. The measured acceleration caused by the impacting

clay would trigger the tail to follow an open loop trajectory

in order to counteract the disturbance and maintain balance

of the cheetah. All tests were recorded by a high speed

video camera viewing the robot from the rear. Three axes of

acceleration, three axes of gyroscope output, motor current

and voltage, motor position, and commanded position were

all logged in each test.

2) Results and Discussion: In all but a few cases, the

cheetah would lose balance when struck when the tail was

inactive. Reviewing these videos showed the tail initially

displaced slightly by the impact only to recover the orig-

inal position soon after. The momentum of the clay was

transferred to the rear hips, which swung outward over the

legs until finally causing the cheetah to tip and fall into

the support of the safety cables. Movement of the hips

was always unidirectional in these cases. Figure 6 shows

snapshots of the video taken at different times and Figure

7 shows the horizontal position of the hips as a function of

time.

Figure 6 also shows snapshots of the case where the

tail was swung and followed a predetermined trajectory

upon impact. The trajectory was calculated to offset the

momentum transfer from the clay and then was manually

Fig. 6. Snapshots taken from two high speed videos recordings of the
experiment. Tail fixed: the tail was set to hold the initial position with a
stiff proportional control. Tail controlled: upon impact of the clay wrecking
ball, the tail followed an open loop trajectory to stabilize the hip. A video
accompanies this paper in the conference proceedings.

tuned over several trials. In Figure 7, one can see from

the plot of hip displacement that the hips initially began to

move with the same velocity as in the case with the passive

tail. As soon as the tail began to accelerate, however, the

hips quickly decelerated and moved slightly back toward the

center position. After approximately 0.2s the tail reached the

commanded position and began to decelerate, thus causing

the hips to again accelerate outward. The cheetah did not lose

balance, however, and returned to a new, shifted equilibrium

stance.

Although this test was performed with the cheetah in

a static stance, we believe the results to be applicable

during dynamic walking and running. Mid-stride, a tail might

quickly react to a disturbance or foot misplacement and keep

the body stable long enough for the next foot placement can

be made. The desired delay in body motion is shown in

Figure 7 before the black dividing bar. This portion of the

plot is almost identical among experimental trials. The plot

of position difference shows a significant peak at about 0.23s

where the fixed tail case has progressed about 7cm beyond

the swung tail case. During running, this difference might

be crucial in maintaining stability long enough for the next

stride to be planned appropriately.

VI. CONCLUSION

In this paper we presented three focused examples investi-

gating the use of a tail for body reorientation and disturbance

rejection. We demonstrated how a tail can be more effective

than a reaction wheel in reorienting the body in cases

when space, power, and time are limited. We proposed a

simple, state-feedback controller that was able to successfully

achieve a desired landing orientation during a limited flight

time in simulation. Finally, we presented the results from an
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Fig. 7. Horizontal trajectory of the hip for two tests, and the difference
between them. Dash-dotted line represents the horizontal position of the
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the peak in the difference created by the motion of the swinging tail. The
swinging tail allows for more time in the stable region when a correcting
foot placement can be made. The region to the left of the dividing bar is
very consistent between all the experiments, whereas some variation is seen
to the right.

experiment showing the effectiveness of a tail in stabilizing

the body after a large disturbance is introduced. Each of these

examples is the beginning of work to more completely utilize

the advantages of a tail. We believe this paper has provided

the reader with arguments and evidence to promote further

investigation into the possibilities tails provide for improving

legged robot performance.
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